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The quantitative structure-property relationship (QSPR) methodology is applied to estimate the binding affinity
of lithium, sodium, potassium, copper, and silver cations to the 20 common amino acids. The proposed model,
nonlinearly derived from computational neural networks (CNN), contains seven descriptors and was validated by
an external prediction set. Good results are obtained with correlation coefficients, R2, and root-mean-square errors
(rms) (kJ/mol) of 0.998 (3.89), 0.999 (2.86), and 0.997 (3.90) for the training, prediction, and validation sets,
respectively. Five of the descriptors of the model correspond to the amino acids and the other two to the cations;
they encode information clearly related to the cation-amino acid interactions responsible for the binding affinity
values analyzed. A detailed analysis of results shows that, despite the different nature of the bonding between the
metal cations and the amino acids, the neural networks used are capable of predicting accurately the property
studied.

1. Introduction

The complexation of metal cations to amino acids is one of
the most important processes in bioinorganic chemistry; for
instance, all metalloenzymes present at least an amino acid
coordinated to a metal cation. Consequently, great amounts of
experimental and theoretical work have been devoted to the
determination of the binding affinity, cation basicity, and
dissociation energy involved in these reactions.1

Several experimental methods to obtain affinities and cation
basicities are known, the kinetic method being the most widely
used.2,3 This method gives only relative values, so to obtain
absolute values it must be calibrated with known affinities or
basicities of one reference compound, and depending on the
accuracy of the anchor value selected, the absolute values can
be significantly different. According to the literature, this method
tends to underestimate binding energies.4 Another widely used
technique is threshold collision-induced dissociation (TCID).5

This method allows the determination of dissociation energies
at 0 K, although by applying thermal corrections the absolute
bond dissociation enthalpies at 298 K can be obtained.6 A third
technique is the measurement of ligand exchange equilibrium
in trapping devices.6 This technique allows the determination
of Gibbs free energies corresponding to the ligand exchange
reactions. The use of anchor values, as well as the subtraction
of the T∆S terms, leads to the determination of bond dissociation
enthalpies at 298 K.7 The continuous improvement in both
hardware and software has made possible the enhancement of
the accuracy with which theoretical calculations can be per-
formed on these systems. In fact, they have been frequently
used to transform the experimental relative cation basicities and
affinities into absolute values. However, the number of amino
acid-ion affinities and basicities calculated is not very large.
A great portion of the published work deals only with the
simplest amino acid, glycine, and to a lesser extent alanine; some
of the ions that have been studied are those from the alkaline
and alkaline earth groups, and some of the first transition series

as well as silver derivatives.8-10 Moreover, it is not easy to
compare the results for the calculations from different authors,
because of the differences in the level of calculation (HF, DFT
with different functionals or MP2), basis set used, and treatment
of the basis set superposition error.

Recently, we have calculated the binding affinity (BA) of the
20 common amino acids and the cations Li+, Na+, K+, Cu+, and
Ag+, defined as the increment of enthalpy at 298 K for the
dissociation of the amino acid-cation complexes, [M(AA)]+, into
the free amino acid and the cation. To obtain comparable and
reliable values of this magnitude, we have used rigorous and high
level computational methods based on DFT. A complete and
homogeneous set of BA values of the interaction of the 20 common
amino acids with the five mentioned cations is reported.11

The quantitative structure-activity relationship approach (QSPR)
has become a very useful tool in the prediction and interpretation
of several physical and chemical properties of families of com-
pounds. The basis of such a relationship is the assumption that the
variation of behavior of the compounds, as expressed by any
measured property, can be correlated with changes in molecular
features of the compounds termed descriptors. Descriptors are
numerical values used to describe different characteristics of a
certain structure to yield information about the studied property.
QSPR methods are based on statistically linear and nonlinear
functional forms that relate the property with descriptors. Its
development involves the selection of descriptors to satisfactorily
characterize the sets of compounds and the application of algo-
rithms, such as multiple linear regression or computational neural
networks (CNN) to build the QSPR model. The advantage of CNN
is their inherent ability to incorporate nonlinear relationships in
the derivation of the QSPR models. Both types of QSPR ap-
proaches, linear and nonlinear, have been applied to the correlation
of many diverse physicochemical properties of chemical sub-
stances.12 More recently, QSPR methodology has been successfully
applied to more complex systems, the so-called multicomponent
systems, where the property studied depends not only on the
chemical nature of the compound, but also on the medium or the
experimental conditions, such as temperature, pressure, solvent,
etc. In these cases, besides the habitual molecular descriptors of
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the compounds studied, other descriptors associated with the other
components of the system have to be used; due to the fact that the
studied property depends on all of these conditions, CNN methods
turned out to be more appropriate for the derivation of the models.
The published QSPR studies on multicomponent systems refer,
mainly, to physical properties (density, viscosity, vapor pressure)
of hydrocarbons as a function of the temperature,13-15 to the
estimation of the solvation free energy of organic compounds in
different solvents,16 and also to the estimation of pKa of several
families of organic compounds (phenols, benzoic and carboxylic
acids, anilines) in different solvents.17-19

The QSPR methodology has been scarcely applied in the
estimation of cation basicities. Two papers have appeared on
the prediction of lithium basicities of a wide set of organic
compounds.20,21 Linear and nonlinear methods have been used,
and the predicted values are good with R2 ≈ 0.8-0.9, and rms
errors of around 5-8 kJ/mol. Recently, the cation affinities of
the 20 common amino acids with H+, Na+, Cu+, and Ag+

cations have been analyzed by QSPR methods.22 Using molec-
ular descriptors of the amino acids, several models were derived
by multiple linear regressions, partial least-squares analysis, and
artificial neural networks. For each cation studied, the authors
propose a different model, containing two or three molecular
descriptors of the amino acids; however, no intent has been made
to derive a single model useful for the prediction of the BA for
the four cations simultaneously.

In this Article, we apply the QSPR methodology to derive a
model capable of estimating simultaneously the binding affinity
of the Li+, Na+, K+, Cu+, and Ag+ cations to the 20 common
amino acids. The values of this property depend clearly on the
nature of both components, amino acids and cations; thus it
must be considered as a multicomponent system, and CNN
methods are used to derive the corresponding model. The set
of descriptors used to characterize the [M(AA)]+ complexes
studied is composed of the habitual molecular descriptors of
the amino acid and of several physicochemical properties, such
as atomic number, ionization energy, electron affinity, radii,
electronegativity, etc., of the cations.

2. Methodology

2.1. Data Set. The data set comprises 100 values of binding
affinity corresponding to the interaction, in gaseous phase, of
the 20 common amino acids with the cations Li+, Na+, K+,
Cu+, and Ag+. These values are those calculated previously
using high level DFT methods,11 and, accordingly, they will be
called DFT calculated values. These BA values spread over a
range of 365 kJ/mol, from 115.6 kJ/mol for the [K(Gly)]+ to
479.8 kJ/mol for the [Cu(Arg)]+ complex, the mean value being
242.4 kJ/mol. Table 1 contains all of the DFT calculated and
QSPR estimated BA values.

This full set was divided in three subsets, training, prediction,
and validation sets, containing 70, 20, and 10 BA values,
respectively. The selection of these three subsets was done to
guarantee that they all contain values of the different amino
acids and cations in the same proportion as the full set; for
example, each amino acid is used once in the prediction set,
and also four values of each cation are included in this subset.
The training set is used exclusively to derive the model; the
prediction set, formed by BA values that were not employed
for the model development, is used to test the predictive capacity
of the model; and the validation set is used to train the neural
networks (see below), to avoid its overtraining and to make
sure that they have good and general predictive capacity.

2.2. Amino Acid Descriptors. The structural descriptors of
the amino acids were calculated using the CODESSA program.23

In our previous study,11 we performed a systematic search of
the amino acid conformers using molecular mechanics and HF
calculations. The lowest energy conformers were reoptimized
with the Gaussian 03 package, at the B3LYP/DZVP level, to
find the most stable conformation, which was used therefore to
derive the binding affinity values. The Gaussian 03 output files
were sent to the CODESSA program to calculate several
hundreds of molecular descriptors, which can be classified in
six general classes: constitutional, topological, geometrical,
electrostatic, quantum-chemical, and charge partial surface area
(CPSA). To encode the effect of the side chains of the amino
acids molecules in the coordination to the metals, we have added
two descriptors to the descriptor pool, the number of heteroatoms
present and the polarizability of these side chains, which has
been calculated using an additive method.24

2.3. Cation Descriptors. To characterize the cation metals,
we have employed several physicochemical properties such as
atomic number, atomic weight, ionization energy, electron
affinity, several electronegativity scales (Pauling, Mulliken,
Sanderson, Allred-Rochow), hardness and softness, cation radii,
and charge/radius ratios, etc. Their values have been taken
mainly from Emsley’s handbook.25 A total of 31 descriptors
were considered for each cation, and they were imported to the
CODESSA program.

The heuristic routines of CODESSA were used to make the
first reduction in the pool of descriptors with the compounds
forming the training set. This process eliminates all of the
incomplete and invariant descriptors, as well as the ones with
the correlation coefficient below 0.01. Descriptors correlated
(above 0.95) with another descriptor, which has a higher
regression coefficient, were also deleted. Following these
procedures, the initial pool of 360 descriptors formed by the
molecular descriptors of the amino acids and the specific
descriptors of the metals was reduced to 164.

2.4. CNN Methods. The CNN treatment was performed with
the ADAPT (Automated Data Analysis and Pattern recognition
Toolkit) program,26,27 including feature selection routines (ge-
netic algorithm28 and simulated annealing29) and CNN proce-
dures.30 The CNNs used are three-layer, fully connected, feed-
forward networks and have been described in detail by Jurs et
al.30,31 The number of neurons of the input layer corresponds to
the number of descriptors in the model. The number of hidden
neurons controls the flexibility of the network and has to be
adjusted until the optimal network architecture is achieved. The
optimization of the number of neurons in these two first layers
is done by means of a building up procedure that consists of
starting with a low number of neurons and increasing it one
unit until the results achieved with the new architecture are not
better than those obtained with the previous one. The output
layer contains one neuron representing the BA value. In this
case, the best architecture found was 7-5-1.

The descriptors retained after the heuristic procedures of
CODESSA were imported to ADAPT, where they were
subjected to the objective feature selection routines of this
program for the compounds in the training set. In this case,
only identical test and intercorrelation of descriptors are taken
into account, both with a cutoff value of 0.9. The new reduced
pools contain 79 descriptors (10 of the cations), which were
used as the starting point in the nonlinear selection of the
models.

Fully CNNs were developed using an automatic genetic
algorithm descriptor selection routine with a CNN for evaluating
the fitness of each subset of descriptors selected. The fitness of
descriptor subsets was calculated as COST ) TSET + 0.4|TSET
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TABLE 1: DFT Calculated and QSPR Estimated BA (kJ/mol) Values for the Training, Prediction, and Validation Sets

no. complex DFT calculated QSPR estimated

1 [Ag(Ala)]+a 212.8 214.8
2 [Ag(Asp)]+a 232.4 233.0
3 [Ag(Gln)]+a 256.7 262.6
4 [Ag(Glu)]+a 234.1 237.0
5 [Ag(Gly)]+a 206.1 205.6
6 [Ag(His)]+a 281.7 281.3
7 [Ag(Ile)]+a 219.0 214.2
8 [Ag(Lys)]+a 290.9 288.5
9 [Ag(Phe)]+a 236.2 231.8

10 [Ag(Pro)]+a 230.3 234.9
11 [Ag(Ser)]+a 224.9 226.0
12 [Ag(Thr)]+a 227.8 224.2
13 [Ag(Trp)]+a 260.0 257.3
14 [Ag(Val)]+a 216.5 215.7
15 [Ag(Asn)]+c 245.8 250.3
16 [Ag(Met)]+c 260.0 256.9
17 [Ag(Arg)]+b 316.0 317.9
18 [Ag(Cys)]+b 228.2 226.3
19 [Ag(Leu)]+b 221.1 222.7
20 [Ag(Tyr)]+b 240.4 240.0
21 [Cu(Arg)]+a 479.8 477.1
22 [Cu(Asn)]+a 348.7 350.1
23 [Cu(Cys)]+a 329.8 326.5
24 [Cu(Gln)]+a 372.9 369.8
25 [Cu(Glu)]+a 336.5 333.7
26 [Cu(Gly)]+a 302.6 302.3
27 [Cu(Ile)]+a 317.3 313.0
28 [Cu(Leu)]+a 318.9 315.5
29 [Cu(Lys)]+a 439.8 441.1
30 [Cu(Met)]+a 371.0 371.2
31 [Cu(Phe)]+a 343.9 345.7
32 [Cu(Ser)]+a 314.7 323.7
33 [Cu(Thr)]+a 319.2 321.4
34 [Cu(Tyr)]+a 349.4 352.6
35 [Cu(Asp)]+c 330.0 329.8
36 [Cu(Trp)]+c 376.2 375.1
37 [Cu(Ala)]+b 308.4 308.6
38 [Cu(His)]+b 410.9 411.6
39 [Cu(Pro)]+b 316.9 317.6
40 [Cu(Val)]+b 314.4 312.4
41 [K(Arg)]+a 192.4 186.8
42 [K(Asn)]+a 150.3 147.0
43 [K(Cys)]+a 115.8 123.3
44 [K(Glu)]+a 136.9 141.3
45 [K(Gly)]+a 115.6 118.7
46 [K(His)]+a 151.7 161.3
47 [K(Ile)]+a 122.1 127.0
48 [K(Leu)]+a 127.1 126.5
49 [K(Met)]+a 135.1 137.9
50 [K(Pro)]+a 135.9 127.0
51 [K(Ser)]+a 131.6 131.0
52 [K(Thr)]+a 133.1 135.7
53 [K(Tyr)]+a 134.6 132.2
54 [K(Val)]+a 124.7 123.9
55 [K(Ala)]+c 120.7 118.0
56 [K(Lys)]+c 149.9 151.0
57 [K(Asp)]+b 139.9 139.5
58 [K(Gln)]+b 154.1 150.8
59 [K(Phe)]+b 135.0 127.0
60 [K(Trp)]+b 144.6 144.3
61 [Li(Ala)]+a 240.1 235.3
62 [Li(Arg)]+a 345.9 347.9
63 [Li(Asp)]+a 285.5 282.8
64 [Li(Cys)]+a 247.8 251.4
65 [Li(Glu)]+a 282.3 286.8
66 [Li(Gly)]+a 235.6 233.7
67 [Li(His)]+a 325.1 319.6
68 [Li(Leu)]+a 249.1 251.0
69 [Li(Met)]+a 278.3 276.0
70 [Li(Phe)]+a 263.8 263.1
71 [Li(Thr)]+a 274.2 274.1
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- VSET|, where TSET and VSET denote rms errors for the
training and validation sets, respectively. Models chosen with
this quality factor performed better than models chosen with
just training set rms error as the quality factor. That is, CNNs
that produce training and validation set errors that are low and
similar in magnitude tend to perform well in predicting
properties of interest for compounds not used in the training
process. A quasi-Newton method BFGS (Broyden-
Flectcher-Golfarb-Shanno)31 is used to train the network. Ten
models were obtained from ADAPT, and the statistical analysis
was performed for the training and the validation sets; as the
coefficients obtained with all of the models were very similar,
the one containing the descriptors that encode more related
information to the nature of the interactions between the amino
acids and the cations was selected.

3. Results and Discussion

According to the procedure indicated, the proposed model
contains the seven descriptors given in Table 2: five descriptors
are molecular descriptors of the amino acids, and the other two
belong to the metal cations. The descriptor relative negative
charged surface area, RNCS, is a CPSA descriptor; this type of
descriptors is constructed from the surface area of the whole

molecule or its fragments and in terms of the charge distribution
in the molecule;32 they encode features responsible for polar
intermolecular interactions. The charges used to derive this
descriptor have been calculated by the method proposed by
Zefirov,33 based on the Sanderson scale of electronegativity. This
descriptor is calculated as the product of solvent-accessible
surface area of the most highly negative atom and the relative
negative charge. It can be associated with the ion-dipole
interactions established between the cations and the amino acid
molecules. The two quantum-chemical descriptors, maximum
nucleophilic reactivity index for the oxygen and nitrogen
atoms,34 are derived from the Fukui frontier molecular orbital
theory. They are defined as:

where the summation is performed over all atomic orbitals i of
a given atom A, and ciHOMO denotes the ith atomic orbital
coefficient for the HOMO. These indexes give an estimate of
the relative reactivity of the atoms in the molecule and are
related to the activation energy of the corresponding chemical
reaction. Thus, they are clearly related to the ability of the amino
acid to bond to the cation through the nitrogen and oxygen
atoms. The maximum values of these descriptors correspond
to the aminic nitrogen atom and the carboxylic oxygen atom of
the amino acid backbone, which are the atoms that are likely
to coordinate to the metal cations.11 The other two structural
descriptors, number of heteroatoms and polarizability of the side
chain, describe the capacity of the amino acid to coordinate to
the metal cations by means of the side chain, and both encode
information about the strength of these bonds. The descriptors
of the model corresponding to the metal cations are the Pauling

TABLE 1 Continued

no. complex DFT calculated QSPR estimated

72 [Li(Trp)]+a 283.8 284.7
73 [Li(Tyr)]+a 264.9 271.0
74 [Li(Val)]+a 245.3 247.2
75 [Li(Gln)]+c 313.5 309.8
76 [Li(Pro)]+c 256.4 252.5
77 [Li(Asn)]+b 303.2 299.4
78 [Li(Ile)]+b 248.6 253.4
79 [Li(Lys)]+b 311.3 309.7
80 [Li(Ser)]+b 269.1 266.8
81 [Na(Ala)]+a 175.9 173.3
82 [Na(Arg)]+a 266.1 266.2
83 [Na(Asn)]+a 224.8 222.7
84 [Na(Asp)]+a 211.0 207.5
85 [Na(Cys)]+a 182.2 186.3
86 [Na(Gln)]+a 231.7 232.0
87 [Na(Ile)]+a 181.4 186.9
88 [Na(Leu)]+a 182.7 188.7
89 [Na(Lys)]+a 231.7 235.2
90 [Na(Phe)]+a 200.1 194.6
91 [Na(Pro)]+a 201.5 193.6
92 [Na(Trp)]+a 215.2 220.4
93 [Na(Tyr)]+a 200.6 202.7
94 [Na(Val)]+a 179.7 183.5
95 [Na(His)]+c 239.9 248.3
96 [Na(Ser)]+a 200.6 197.0
97 [Na(Glu)]+b 210.5 211.1
98 [Na(Gly)]+b 172.3 170.6
99 [Na(Met)]+b 209.6 207.0

100 [Na(Thr)]+b 203.6 199.5

a Training set. b Prediction set. c Validation set.

TABLE 2: Descriptors of the Model

relative negative charged surface area, RNCS (amino acid)
maximum nucleophilic reactivity index for an oxygen atom

(amino acid)
maximum nucleophilic reactivity index for a nitrogen atom

(amino acid)
number of heteroatoms in the side chain (amino acid)
polarizability of the side chain (amino acid)
charge/Shannon radii (metal)
Pauling electronegativity (metal)

NA
′ ) ∑

i∈ A

ciHOMO
2
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electronegativity and the charge/Shannon radii ratio; both are
evidently associated with the strength of the bond between the
cation and the amino acid. The dissociation energy of a chemical
bond depends on the difference of electronegativities between
the two atoms implicated; however, the charge/radii ratio of an
atom is a measure of its polarizing power and consequently of
the covalent-ionic degree of the involved bond between the
cation and the heteroatoms of the amino acid and therefore of
its bond energy. It is interesting to note that in one recent QSPR
study on the enthalpies of formation of organometallic com-
pounds,35 the proposed model contains, besides seven consti-
tutional molecular descriptors, these same descriptors of the
metals, showing the contribution of the metals to the enthalpy
of formation of the organometallic compounds.

The statistical results obtained with this model are very good;
the coefficient of determination, R2, is 0.998, 0.999, and 0.997
for the training, prediction, and validation sets, respectively, and
the rms error is 3.89, 2.86, and 3.90 kJ/mol for these three sets,
respectively. Figure 1 shows the plot of predicted versus DFT
calculated values of BA for the 100 complexes studied. To
ensure that these results are not due to chance effects, Y-
randomization experiments were conducted, and the average R2

and the rms error for the 10 cases performed are 0.235 and 68.47
kJ/mol, respectively, proving that chance correlations are not
present in this study. The neural network analysis was repeated
five times, varying in each case the splitting of the original data
set into training, prediction, and validation sets; the statistical
values obtained in each case are very similar, the average rms
error being 3.99, 3.85, and 3.70 kJ/mol for the training,
prediction, and validation sets, respectively; the average R2 is
0.998 for each one of the three subsets, showing that the model
has a good statistical stability and validity. This procedure
allowed also the calculation of the 5-fold cross-validation
correlation coefficient (Q2) and rms error for the predictions;
in this case, these two parameters are 0.997 and 3.90 kJ/mol,
respectively, showing the good prediction ability of the proposed
model.

Table 3 shows the statistical parameters for the subsets of
BA values for each metal; these results, with R2 and rms errors
very similar between them and also to ones of the complete

set, prove the robustness of the model. A simple method that
measures the relative importance of the descriptors in CNN-
derived models is known;36 the first descriptor is randomly
scrambled and the property is calculated again, and obviously
the rms error for the new prediction will be larger than the model
error, the so-called base rms error. The difference between the
scrambled rms error and the base rms error represents the
importance of the descriptor into the model: bigger differences
are associated with more important descriptors. In the present
case, the two most significant descriptors are those of the cations,
charge/Shannon radii ratio and Pauling electronegativity, show-
ing the strong dependence of the BA on the nature of the metal
in the interaction with the amino acid molecule; the third most
important descriptor is the RNCS of the amino acids.

The complexes studied, [M(AA)]+, can adopt different
structures depending on the conformation of the amino acid and
the number and type of coordination modes to the metal. The
metallic cations can be coordinated to the amino acid molecules
by different sites, aminic nitrogen, carboxylic oxygen, hydroxy-
lic oxygen, other heteroatoms present in the side chain, and also
by the rings that several amino acids have. Another option to
be considered is the possibility of the amino acid to adopt the
zwitterionic form. In our previous study, we optimized very
accurately the geometry of the free amino acids molecules and
analyzed, very carefully, the possible different modes of
coordination. We have concluded that the 100 complexes
analyzed adopt one of the following four possibilities (Figure
2). The Li+, Na+, Cu+, and Ag+ derivatives of the most simple
amino acids (Gly, Ala, Val, Leu, Ile) adopt the form A, where
the cations are coordinated by the aminic nitrogen and the
carboxylic oxygen atoms; while the K+ cation is coordinated
by the two oxygen atoms of the acid group (form B). The other
amino acids contain more heteroatoms (oxygen, nitrogen, or
sulfur) or rings in the side chain, and therefore the more stable
configurations found are the tridentate complexes (form D),
where the metal is bonded to the nitrogen and carboxylic oxygen
of the amino acid backbone and to the side chain through one
heteroatom or ring. The complexes of the Li+, Na+, K+, and
Ag+ cations with the amino acid proline (Pro) present the

Figure 1. Plot of QSPR estimated versus DFT calculated BA (kJ/
mol) values for the training, prediction, and validation sets.

TABLE 3: Statistics of Binding Affinity Estimations for
Each Metal Derivatives Subset

subset n R2 rms

[Li(AA)]+ 20 0.998 3.36
[Na(AA)]+ 20 0.969 4.28
[K(AA)]+ 20 0.925 4.63
[Cu(AA)]+ 20 0.996 2.96
[Ag(AA)]+ 20 0.998 3.00

Figure 2. Coordination modes between the cation and the amino
acids.
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zwitterionic form (form C), with the cations coordinated to both
oxygen atoms of the acid functional group. On the other hand,
the Cu+ derivative of this amino acid adopts the neutral form
coordinated through the aminic nitrogen and the carboxylic
oxygen (form A). Even though the cations studied are apparently
very similar, they differ in some basic aspects such as the
electronic configuration, the radii, and consequently the polar-
izing power; thus, the interactions with the amino acids can
have different degrees of ionic or covalent bonding. To sum,
the nature and strength of the chemical bonds in the complexes
studied are rather diverse. Despite all of these facts, the model
proposed has very good statistical parameters, showing a high
capacity to predict the binding affinity of this kind of system.
The neural networks used have demonstrated their capability
to interpret the different types of interactions between the cations
and the amino acids in the [M(AA)]+ complexes analyzed.

The values of Table 1 give one rms error for the 100 entries
of 3.71 kJ/mol; there is not any entry with a residual larger
than 3 times this error, and only seven complexes have residuals
larger than twice the rms error (Table 4). Among these values,
three are positive while the other four are negative; they
correspond to complexes containing three different cations and
five amino acids, and consequently no structural reason is
apparent to explain these larger errors. However, four complexes
are K+ derivatives, and as it was stated before, the cation K+

differs from the other cations studied in the sense that it
coordinates to the amino acid in a different way. With the
simplest amino acids, it takes form C, when the other four
cations adopt form A. Also, of the five amino acids present in
these seven complexes, three have rings in the corresponding
side chains, and their coordination to the metals is more
complex, mainly in the case of the proline. Although the
goodness of results obtained proves undoubtedly that these
differences in the modes of coordination have been recognized
by the neural networks, it is not unexpected that the larger
residuals in the predicted values correspond to complexes of
the cation K+ and/or of the amino acid proline. Accordingly,
the statistical parameters of the subset formed by the K+

complexes in Table 3 show a little lower R2 value and a little
higher rms error than do the other four subsets.

4. Conclusions

The QSPR methodology has been successfully applied to the
estimation of the binding affinity of the Li+, Na+, K+, Cu+, and
Ag+ cations to the 20 common amino acids. The proposed model,
nonlinearly derived, contains seven descriptors: five of them are
molecular descriptors of the amino acids, and the other two
correspond to the metal cations. The statistical parameters found
and the validation methods used show the goodness, robustness,
and the predictive capacity of the model. The descriptors contained
in the model encode information clearly related to the factors that
affect the bonds between the cation and the amino acid responsible
for the BA values analyzed. The neural networks used in the

derivation of the model are able to recognize the different nature
of the interactions present in the complexes [M(AA)]+, a conse-
quence of the conformations adopted by the amino acids and the
atoms that coordinate to the metals. The QSPR-derived model was
demonstrated to be a simple, efficient, and rapid method of
estimating binding affinities of the amino acids with different
cations. The obtained results show that QSPR methods can be
useful in the estimation of binding properties of cations and amino
acids not reported here and also of more complex systems such as
metal cation/peptides.
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TABLE 4: Predictions with Residuals Larger than Twice
the rms Error

complex entry DFT calc. QSPR est. residual

[K(Cys)]+ 43 115.8 123.3 -7.5
[Na(Pro)]+ 91 201.5 193.6 7.9
[K(Phe)]+ 59 135.0 127.0 8.0

[Na(His)]+ 95 239.9 248.3 -8.4
[K(Pro)]+ 50 135.9 127.0 8.9

[Cu(Ser)]+ 32 314.7 323.7 -9.0
[K(His)]+ 46 151.7 161.3 -9.6

3708 J. Phys. Chem. A, Vol. 113, No. 15, 2009 Jover et al.


